Package index
-
create_bipartite()
- Create a random bipartite network
-
create_census_graph()
- Create a Dyad Census-Conditioned Random Graph
-
create_community_graph()
- Create a graph with a given community structure
-
create_components_graph()
- Create a graph with strict components
-
create_empty_graph()
- Create an empty network
-
create_manual_graph()
- Create a manual (literal) graph
-
create_random_graph()
- Create a random bipartite network
-
remove_edge_attribute()
remove_edge_weight()
remove_vertex_attribute()
remove_graph_attribute()
remove_vertex_names()
- Remove parts of the graph
-
remove_isolates()
- Remove all isolates from the graph
-
remove_loops()
- Remove loops
-
remove_vertices()
- Remove vertices
-
add_edge_attributes()
- Add edge attributes to a graph
-
add_graph_attribute()
- Add a graph attribute
-
add_vertex_attributes()
- Add vertex attributes to a graph
-
add_vertex_names()
- Add vertex names to a graph
Extract parts of the graph
Functions starting with extract_*
. The functions that contain _comm_
extract community structures from the graph.
-
extract_vertex_attribute()
extract_vertex_names()
extract_edge_attribute()
extract_graph_attribute()
- Extract attributes from the graph object
-
extract_all_vertex_attributes()
- Extract all vertex attributes
-
extract_comm_fastgreedy()
- Community structure via greedy optimization of modularity
-
extract_comm_girvan()
- Community structure based on edge betweenness
-
extract_comm_louvain()
- Community structure via multi-level optimization of modularity
-
extract_comm_walktrap()
- Community structure via short random walks
-
extract_edge_id()
- Extract edge id's
-
extract_egonet()
- Extract ego networks
-
extract_intersection()
- Intersection of graphs
-
extract_isolates()
- Extract the isolates
-
extract_loops()
extract_loops_vertex()
- Extract loops
-
extract_neighbors()
- Extract the neighbors of a vertex
-
extract_subgraph()
- Extract a subgraph
-
list_vertex_attributes()
list_edge_attributes()
list_graph_attributes()
- List the attributes in the graph object
-
has_edge_attributes()
has_vertex_attributes()
has_vertex_attribute()
has_edge_attribute()
has_vertexnames()
has_loops()
has_isolates()
- Check for the existence of edge attributes in the graph
-
is_bipartite()
- Is the network bipartite?
-
is_connected()
- Is the network connected?
-
is_directed()
- Is the network directed?
-
is_signed()
- Is the network signed?
-
is_network()
is_igraph()
- Is something?
-
is_weighted()
- Is the network weighted?
Make new objects from the graph object
Use (info from) the graph object(s) to construct some useful output object
-
make_edgelist()
- Make an edgelist from row data
-
make_matrix_from_vertex_attribute()
- Make a matrix from a vertex attribute
-
make_mixingmatrix()
- Construct a mixing matrix
-
make_nodelist()
- Make a node list from row data
-
make_perturbed_graph()
- Perturb a binary graph
-
make_union()
- Union of graphs
-
to_binary_matrix()
- Dichotomize a matrix
-
to_edgelist()
- Make edgelist
-
to_igraph()
- Make igraph object
-
to_matrix()
- Make a matrix from a graph
-
to_network()
- Make network object
-
to_symmetric_matrix()
- Symmetrize an adjacency matrix
-
contract_vertices()
- Contract multiple vertices into 1 new vertex
-
merge_membership()
- Merge community membership
-
print(<igraph>)
print(<network>)
- Print the graph object
Graph-level indices
Indices at the level of the graph itself Functions starting with count_*
provide a count of specific greaph-level attributes. Functions starting with g_*
calculate common graph-level indices, such as mean distance, centralization, or reciprocity.
-
g_summary()
g_density()
g_mean_distance()
g_correlation()
g_reciprocity()
g_transitivity()
g_diameter()
g_radius()
g_compactness()
g_degree_distribution()
- Graph level indices
-
count_dyads()
- Count dyad types
-
count_edges()
- Number of edges in the graph
-
count_edges_in_interval()
- Count edges in time interval
-
count_triads()
- Count triad types
-
count_unique_edges_in_interval()
- Count unique edges in time interval
-
count_vertices()
- Number of vertices in the graph
-
g_centralize()
- Centralization
-
g_efficiency()
- Compute Graph Efficiency
-
g_secrecy()
v_secrecy()
- secrecy index
-
g_vuln_attack()
- Vulnerability: attack
-
g_vuln_efficiency()
- Vulnerability: efficiency
-
g_vuln_paths()
- Vulnerability: paths
Edge-level indices
Indices at the level of the dyads (directed or undirected) (Almost) all functions start with d_*
-
d_distance()
- Dyad level indices
-
d_structural_equivalence()
- Structural equivalence
-
v_degree()
v_eccentricity()
v_betweenness()
v_stress()
v_eigenvector()
v_closeness()
v_harmonic()
v_pagerank()
v_geokpath()
v_shapley()
- Vertex level indices
-
g_secrecy()
v_secrecy()
- secrecy index
-
v_bottleneck()
- Find the Bottleneck centrality score
-
v_distance()
- Distances to and from a vertex
-
v_geokpath_w()
- Geodesic k-path centrality
-
fix_cug_input()
- Fix intermediate CUG input
-
stat_ef_int()
- Estimate the intensity of effects using odds ratio and probabilities
-
stat_nam()
- Network autocorrelation model
-
stat_nam_summary()
- Network autocorrelation results
-
stat_plot_gof()
- Plot the Goodness of fit of a (bt)ergm result
-
stat_plot_gof_as_btergm()
- gof and plot (btergm style)
-
plot_nam()
- Plot diagnostics for the network autorrelation model
Plotting
Generic functions to plot graph objects. Also, functions to plot features of the graph or output from statistical network models.
-
plot(<igraph>)
plot(<network>)
- Plot the graph object
-
plot_centralities()
- Plot one or more centrality scores
-
plot_comm_dendrogram()
- Plot a dendrogram of the community structure
-
plot_nam()
- Plot diagnostics for the network autorrelation model
-
plot_network_slices()
- Plot network slices
Datasets
A small set of datasets, mainly used in examples or testing. A more interesting set of data for the SNA4DS course can be found in the SNA4DSData
package.
-
florentine
- Florentine families
-
judge_net
- Judges network
-
Madrid_bombing
- Madrid Train Bombing 2004 (dataset)
-
soccer98
- Soccer98 network