Package index
-
create_bipartite() - Create a random bipartite network
-
create_census_graph() - Create a Dyad Census-Conditioned Random Graph
-
create_community_graph() - Create a graph with a given community structure
-
create_components_graph() - Create a graph with strict components
-
create_empty_graph() - Create an empty network
-
create_manual_graph() - Create a manual (literal) graph
-
create_random_graph() - Create a random bipartite network
-
remove_edge_attribute()remove_edge_weight()remove_vertex_attribute()remove_graph_attribute()remove_vertex_names() - Remove parts of the graph
-
remove_isolates() - Remove all isolates from the graph
-
remove_loops() - Remove loops
-
remove_vertices() - Remove vertices
-
add_edge_attributes() - Add edge attributes to a graph
-
add_graph_attribute() - Add a graph attribute
-
add_vertex_attributes() - Add vertex attributes to a graph
-
add_vertex_names() - Add vertex names to a graph
Extract parts of the graph
Functions starting with extract_*. The functions that contain _comm_ extract community structures from the graph.
-
extract_vertex_attribute()extract_vertex_names()extract_edge_attribute()extract_graph_attribute() - Extract attributes from the graph object
-
extract_all_vertex_attributes() - Extract all vertex attributes
-
extract_comm_fastgreedy() - Community structure via greedy optimization of modularity
-
extract_comm_girvan() - Community structure based on edge betweenness
-
extract_comm_louvain() - Community structure via multi-level optimization of modularity
-
extract_comm_walktrap() - Community structure via short random walks
-
extract_edge_id() - Extract edge id's
-
extract_egonet() - Extract ego networks
-
extract_intersection() - Intersection of graphs
-
extract_isolates() - Extract the isolates
-
extract_loops()extract_loops_vertex() - Extract loops
-
extract_neighbors() - Extract the neighbors of a vertex
-
extract_subgraph() - Extract a subgraph
-
list_vertex_attributes()list_edge_attributes()list_graph_attributes() - List the attributes in the graph object
-
has_edge_attributes()has_vertex_attributes()has_vertex_attribute()has_edge_attribute()has_vertexnames()has_loops()has_isolates() - Check for the existence of edge attributes in the graph
-
is_bipartite() - Is the network bipartite?
-
is_connected() - Is the network connected?
-
is_directed() - Is the network directed?
-
is_signed() - Is the network signed?
-
is_network()is_igraph() - Is something?
-
is_weighted() - Is the network weighted?
Make new objects from the graph object
Use (info from) the graph object(s) to construct some useful output object
-
make_edgelist() - Make an edgelist from row data
-
make_matrix_from_vertex_attribute() - Make a matrix from a vertex attribute
-
make_mixingmatrix() - Construct a mixing matrix
-
make_nodelist() - Make a node list from row data
-
make_perturbed_graph() - Perturb a binary graph
-
make_union() - Union of graphs
-
to_binary_matrix() - Dichotomize a matrix
-
to_edgelist() - Make edgelist
-
to_igraph() - Make igraph object
-
to_matrix() - Make a matrix from a graph
-
to_network() - Make network object
-
to_symmetric_matrix() - Symmetrize an adjacency matrix
-
contract_vertices() - Contract multiple vertices into 1 new vertex
-
merge_membership() - Merge community membership
-
print(<igraph>)print(<network>) - Print the graph object
Graph-level indices
Indices at the level of the graph itself Functions starting with count_* provide a count of specific greaph-level attributes. Functions starting with g_* calculate common graph-level indices, such as mean distance, centralization, or reciprocity.
-
g_summary()g_density()g_mean_distance()g_correlation()g_reciprocity()g_transitivity()g_diameter()g_radius()g_compactness()g_degree_distribution() - Graph level indices
-
count_dyads() - Count dyad types
-
count_edges() - Number of edges in the graph
-
count_edges_in_interval() - Count edges in time interval
-
count_triads() - Count triad types
-
count_unique_edges_in_interval() - Count unique edges in time interval
-
count_vertices() - Number of vertices in the graph
-
g_centralize() - Centralization
-
g_efficiency() - Compute Graph Efficiency
-
g_secrecy()v_secrecy() - secrecy index
-
g_vuln_attack() - Vulnerability: attack
-
g_vuln_efficiency() - Vulnerability: efficiency
-
g_vuln_paths() - Vulnerability: paths
Edge-level indices
Indices at the level of the dyads (directed or undirected) (Almost) all functions start with d_*
-
d_distance() - Dyad level indices
-
d_structural_equivalence() - Structural equivalence
-
v_degree()v_eccentricity()v_betweenness()v_stress()v_eigenvector()v_closeness()v_harmonic()v_pagerank()v_geokpath()v_shapley() - Vertex level indices
-
g_secrecy()v_secrecy() - secrecy index
-
v_bottleneck() - Find the Bottleneck centrality score
-
v_distance() - Distances to and from a vertex
-
v_geokpath_w() - Geodesic k-path centrality
-
fix_cug_input() - Fix intermediate CUG input
-
stat_ef_int() - Estimate the intensity of effects using odds ratio and probabilities
-
stat_nam() - Network autocorrelation model
-
stat_nam_summary() - Network autocorrelation results
-
stat_plot_gof() - Plot the Goodness of fit of a (bt)ergm result
-
stat_plot_gof_as_btergm() - gof and plot (btergm style)
-
plot_nam() - Plot diagnostics for the network autorrelation model
Plotting
Generic functions to plot graph objects. Also, functions to plot features of the graph or output from statistical network models.
-
plot(<igraph>)plot(<network>) - Plot the graph object
-
plot_centralities() - Plot one or more centrality scores
-
plot_comm_dendrogram() - Plot a dendrogram of the community structure
-
plot_nam() - Plot diagnostics for the network autorrelation model
-
plot_network_slices() - Plot network slices
Datasets
A small set of datasets, mainly used in examples or testing. A more interesting set of data for the SNA4DS course can be found in the SNA4DSData package.
-
florentine - Florentine families
-
judge_net - Judges network
-
Madrid_bombing - Madrid Train Bombing 2004 (dataset)
-
soccer98 - Soccer98 network